Minimal Obstructions for Partial Representations of Interval Graphs
نویسندگان
چکیده
Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation. Two linear-time algorithms are known for solving this problem. In this paper, we characterize the minimal obstructions which make a partial representation non-extendible. This generalizes Lekkerkerker and Boland’s characterization of minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to a linear-time certifying for partial representation extension.
منابع مشابه
Obstructions for the Graphs of Vertex Cover Seven
In this paper we present an optimized procedure for computing the minor-order obstructions for graphs of vertex cover at most k. This extends the earlier method and results of Cattell and Dinneen in 1994, for k ≤ 5. Here we extended the known set of forbidden graphs for k ≤ 7. To help reduce the size of these sets, we also mention some proposals for finding minimal forbidden graphs for other “s...
متن کاملMatrix Partitions of Split Graphs
Matrix partition problems generalize a number of natural graph partition problems, and have been studied for several standard graph classes. We prove that each matrix partition problem has only finitely many minimal obstructions for split graphs. Previously such a result was only known for the class of cographs. (In particular, there are matrix partition problems which have infinitely many mini...
متن کاملA short proof that 'proper = unit'
A short proof is given that the graphs with proper interval representations are the same as the graphs with unit interval representations. An graph is an interval graph if its vertices can be assigned intervals on the real line so that vertices are adjacent if and only if the corresponding intervals intersect; such an assignment is an interval representation. When the intervals have the same le...
متن کاملGroups with Two Extreme Character Degrees and their Minimal Faithful Representations
for a finite group G, we denote by p(G) the minimal degree of faithful permutation representations of G, and denote by c(G), the minimal degree of faithful representation of G by quasi-permutation matrices over the complex field C. In this paper we will assume that, G is a p-group of exponent p and class 2, where p is prime and cd(G) = {1, |G : Z(G)|^1/2}. Then we will s...
متن کاملExtending Partial Representations of Function Graphs and Permutation Graphs
Function graphs are graphs representable by intersections of continuous real-valued functions on the interval [0, 1] and are known to be exactly the complements of comparability graphs. As such they are recognizable in polynomial time. Function graphs generalize permutation graphs, which arise when all functions considered are linear. We focus on the problem of extending partial representations...
متن کامل